INHIBITION EXPERIMENTS WITH PNEUMOCOCCAL C AND DEPYRUVYLATED TYPE-IV POLYSACCHARIDES*

M. Heidelberger**, E. C. Gotschlich[†], and J. D. Higginbotham**

Department of Pathology, New York University School of Medicine, New York, New York 10016, and The Rockefeller University, New York, New York 10021 (U. S. A.)

(Received August 3rd, 1971; accepted for publication, September 1st, 1971)

ABSTRACT

Phosphorylcholine, a component of the group-specific "somatic" C-polysac-charide of pneumococcus, has previously been shown to be a potent inhibitor of the precipitation of C-reactive protein (CRP) by C-polysaccharide as well as of the reaction between C-reactive myeloma proteins and the polysaccharide. We now find that phosphorylcholine is a fairly strong inhibitor of the homologous C-polysaccharide anti-C reaction as well as of the precipitation of anti-C by depyruvylated, pneumococcal type-IV, capsular polysaccharide. D-Glucose and 2-acetamido-2-deoxy-D-galactose are poor inhibitors. The surmise that phosphorylcholine might be an important antigenic determinant of C-polysaccharide is therefore confirmed by direct evidence.

INTRODUCTION

The writers recently showed that the type-specific, capsular polysaccharide (S-IV) of pneumococcus (Pn) type-IV was converted by loss of pyruvic acid into a derivative (dp-IV) which not only reacted massively with antibodies to pneumococcal group-specific C-polysaccharide, regardless of type, but also precipitated the C-reactive protein which appears in human infections and inflammations ¹. S-IV is composed of D-galactose, pyruvic acid, and the N-acetyl derivatives of 2-amino-2-deoxy-D-galactose, 2-amino-2-deoxy-D-mannose, and 2-amino-2,6-dideoxy-L-galactose. C-substance obtained by autolysis or detergent-induced lysis of pneumococci contains 2-acetamido-2-deoxy-D-galactose phosphate, 2-acetamido-2-deoxy-D-glucose, N-acetylmuramic acid, amino acids, glucose, and choline ^{2,3}. In addition, ribitol phosphate and a mono-N-acetyldiaminotrideoxyhexose have been detected in C-polysaccharide prepared by extraction with trichloroacetic acid ⁴. 2-Acetamido-2-deoxy-D-galactose, the only sugar common to both C-substance and S-IV, was shown to inhibit the C anti-C reaction less well than the corresponding phosphate ².

In the meantime, phosphorylcholine (PC) has been found to be an excellent inhibitor of the reaction between C and C-reactive protein⁵, as well as of the precipi-

^{*}Dedicated to Professor M. Stacey, C.B.E., F.R.S., in honour of his 65th birthday.

^{**}Aided by Grant GB-12592 from the National Science Foundation.

[†]Aided by grant HE-03919 from the United States Public Health Service.

tation of C by certain myeloma proteins⁶. As far as is known, these proteins are not actually elicited in animals by C-polysaccharide. Inhibition of these reactions, while providing evidence for receptors accommodating PC on the surfaces of C-reactive protein and reactive myeloma proteins, does not necessarily indicate the presence of similar receptors on anti-C globulin, nor does it testify as to the importance of PC as an actual antigenic determinant of C-polysaccharide; that is, a portion of the molecule reactive with antibodies stimulated by the pneumococcal, group-specific antigen.

Direct evidence is now given that PC is, indeed, an antigenic determinant of C-polysaccharide.

MATERIALS AND METHODS

The quantitative estimations of antibody nitrogen given in Tables I and II were carried out as in earlier papers^{7,8} with antisera diluted so as to yield approximately the desired amount of antibody at equivalence, or, in the case of the dp-IV anti-C reactions, at maximal precipitation. The tubes containing serum-saline controls and mixtures with inhibitor were allowed to stand in ice-water for 40-60 min before addition of polysaccharide.

Inhibition of the reaction of C-substance with CRP by phosphorylcholine and phosphoethanolamine was assayed by a micromethod employing ¹²⁵I trace-labelled crystalline CRP; labelled by the Chloramine T method⁹, it gave a specific activity of

TABLE I INHIBITION OF PRECIPITATION IN PNEUMOCOCCAL C ANTI-C SYSTEMS BY 2-ACETAMIDO-2-DEOXY-D-GALACTOSE AND BY PHOSPHORYLCHOLINE (PC)

Inhibitor added (µM)	Antiserum	Total vol. (ml)	At 0° (days)	Antibody N pptd. (µg)	Inhibition (%)
None	R1238 ^b	0.5	6	28 ^c	
PC, 22.5	R1238	0.5	6	19.5	30
PC, 11	R1238	0.5	6	18.5	34
None	R1238	0.5	7	29.5	
GalNAc, 30	R1238	0.5	7	21.5	27
PC, 11	R1238	0.5	7	19.5	34
PC, 6	R1238	0.5	7	21	29
None	R1238	0.5	7	28.5 ^d	
PC, 45	R1238	0.5	7	17.5	39
PC, 22.5	R1238	0.5	7	20.5	28

^aIn separate experiments, 33μm p-glucose failed to inhibit precipitation of anti-C in anti-PnI 1057 or anti-PnVII 1074 by C-polysaccharide. ^bSerum of rabbit immunized with non-encapsulated pneumococci. ^cThe C-polysaccharide used was prepared from non-encapsulated pneumococci originally of type II. ^aC-polysaccharide used was isolated as a by-product in the preparation of the capsular polysaccharide of Pn type-IV.

TABLE II
INHIBITION OF PRECIPITATION IN DEPYRUVYLATED S-IV ANTI-C SYSTEMS^a BY PHOSPHORYLCHOLINE

Inhibitor added (µм)	Antiserum	Total vol. (ml)	At 0° (days)	Antibody N pptd. (µg)	Inhibition (%)
None	R1238	0.5	6	25.5 ^b	
PC, 11	R1238	0.5	б	28.5	
PC, 6	R1238	0.5	6	25.5	
None	Anti-PnI 1057c	0.5	10	27	
PC, 45	Anti-PnI 1057	0.5	10	22.5	17
PC, 22.5	Anti-PnI 1057	0.5	10	23.5	13
None	Anti-PnVII 1074 ^d	0.5	9	34.5	
PC, 45	Anti-PnVII 1074	0.5	9	30	13
PC, 22.5	Anti-PnVII 1074	0.5	9	34	
None	R1238	0.5	8	32e	
PC, 45	R1238	0.5	8	22	31
PC, 22.5	R1238	0.5	8	29.5	8
PC, 11	R1238	0.5	8	30	

[&]quot;Inhibition in these systems by 40μ M 2-acetamido-2-deoxy-p-glucose was minimal. "Dp-IV prepared from S-IV in 0.01M HCl for 30 min at 100°. "Antiserum contains 288 μ g of anti-C nitrogen per ml. "Dp-IV prepared from S-IV in 0.01M HCl for 7 min at 100°.

60,000 c.p.m./ μ g. To 8 μ g of CRP were added various concentrations of the inhibitors and either 1 μ g of C-substance or 10 μ g of dp-IV. The reactions were carried out in a total volume of 100 μ l in Microfuge tubes (Beckman Instruments, Palo Alto, Calif.).

TABLE III

INHIBITION BY PHOSPHORYLCHOLINE AND PHOSPHOETHANOLAMINE OF PRECIPITATION OF CRP WITH

C-SUBSTANCE AND WITH DEPYRUVYLATED S-IV (DP-IV)

Inhibitor	Concentration of	Inhibition ^a of reaction of CRP with		
	inhibitor (μmoles/ml)	C-polysaccharide (%)	dp-IV (%)	
Phosphorylcholine	0.002	0	18	
· · ·	0.005	8	49	
	0.010	22	77	
	0.020	43	92	
	0.050	95	92	
Phosphoethanolamine .	0.010	0	0	
	0.020	0	9	
	0.050	2	20	
	0.100	9	59	
	0.200	17	80	
	0.500	49	94	
	1.000	84	95	
	2.000	97	94	

[&]quot;To the nearest %.

After equilibration overnight at 4°, the precipitated CRP was sedimented by centrifugation for 5 min in a Microfuge (Beckman Instruments). The supernatant was discarded, and the radioactivity in the sediment was measured in a gamma scintillation counter.

RESULTS AND DISCUSSION

From the studies cited^{5,6} and from the data in Tables I-III, it is evident that phosphorylcholine (PC) is a far more-potent inhibitor of the precipitation of myeloma protein or C-reactive protein (CRP) by pneumococcal C-polysaccharide or depyruvylated, type-IV, capsular polysaccharide (dp-IV) than of the homologous C anti-C reaction or of the dp-IV anti-C cross-reaction.

The failure of PC to inhibit the C anti-C reaction more impressively is readily understandable, since PC is only a single component of this complex polysaccharide. Anti-C is therefore probably directed against several of the constituents of C-polysaccharide and any single component would not be expected to inhibit greatly, if at all. This has already been shown for a number of polysaccharide antibody systems, e.g. Refs. 10–12. Cross-reactions, which usually involve only a portion of the complete antigenic determinant, are more easily inhibited than homologous precipitations.

It has been shown that several very different phosphate monoesters inhibit the reaction of CRP with C-substance and that CRP has a binding site for phosphate monoester on each of its subunits¹³. The finding that phosphorylcholine is approximately 20 times more potent than phosphoethanolamine in inhibiting CRP is in agreement with the data of Kaplan and Volanakis⁵. Why this particular phosphate monoester, PC, is a more-potent inhibitor is as yet unexplained. It is also uncertain why depyruvylated S-VI should react with CRP, particularly since 2-acetamido-2-deoxy-D-galactose is the only component common to dp-IV and C.

REFERENCES

- 1 J. D. HIGGINBOTHAM, M. HEIDELBERGER, AND E. C. GOTSCHLICH, Proc. Nat. Acad. Sci. U.S., 67 (1970) 138.
- 2 T. Y. LIU AND E. C. GOTSCHLICH, J. Biol. Chem., 238 (1963) 1928; E. C. GOTSCHLICH AND T. Y. LIU, ibid., 242 (1967) 463.
- 3 A. TOMASZ, Science, 157 (1967) 694; J. L. MOSSER AND A. TOMASZ, J. Biol. Chem., 245 (1970) 287.
- 4 D. E. BRUNDISH AND J. BADDILEY, Biochem. J., 110 (1968) 573.
- 5 M. H. KAPLAN AND J. E. VOLANAKIS, Federation Proc., 30 (1971) 471.
- 6 M. Potter and M. Leon, Science, 162 (1968) 369; M. Potter and R. Lieberman, J. Expt. Med., 132 (1970) 737.
- 7 M. HEIDELBERGER AND P. A. REBERS, J. Amer. Chem. Soc., 80 (1958) 116.
- 8 M. Heidelberger, H. Jahrmärker, B. Björklund, and J. Adams, J. Immunol., 78 (1957) 419.
- 9 F. C. GREENWOOD AND W. M. HUNTER, Biochem. J., 89 (1963) 114.
- 10 J. W. GOODMAN AND E. A. KABAT, J. Immunol., 84 (1960) 333, 347.
- 11 P. A. Rebers, E. Hurwitz, and M. Heidelberger, J. Bacteriol., 82 (1961) 920.
- 12 S. Estrada-Parra, P. A. Rebers, and M. Heidelberger, Biochemistry, 1 (1962) 1175.
- 13 E. C. Gotschlich and G. M. Edelman, Proc. Nat. Acad. Sci. U.S., 57 (1967) 706.